什么是光學

2013-12-31 admin1

  光學(optics)是研究光(電磁波)的行為和性質(zhì),以及光和物質(zhì)相互作用的物理學科。傳統(tǒng)的光學只研究可見光,現(xiàn)代光學已擴展到對全波段電磁波的研究。

  光是一種電磁波,在物理學中,電磁波由電動力學中的麥克斯韋方程組描述;同時,光具有波粒二象性,需要用量子力學表達。


什么是光學


  光學的起源在西方很早就有光學知識的記載,歐幾里得(Euclid,公元前約330~260)的<反射光學>(Catoptrica)研究了光的反射;阿拉伯學者阿勒&middot;哈增(AI-Hazen,965~1038)寫過一部<光學全書>,討論了許多光學的現(xiàn)象。


  光學真正形成一門科學,應該從建立反射定律和折射定律的時代算起,這兩個定律奠定了幾何光學的基礎。17世紀,望遠鏡和顯微鏡的應用大大促進了幾何光學的發(fā)展。


  光的本性(物理光學)也是光學研究的重要課題。微粒說把光看成是由微粒組成,認為這些微粒按力學規(guī)律沿直線飛行,因此光具有直線傳播的性質(zhì)。19世紀以前,微粒說比較盛行。但是,隨著光學研究的深入,人們發(fā)現(xiàn)了許多不能用直進性解釋的現(xiàn)象,例如干涉、衍射等,用光的波動性就很容易解釋。於是光學的波動說又占了上風。兩種學說的爭論構(gòu)成了光學發(fā)展史上的一根紅線。

  狹義來說,光學是關于光和視見的科學,optics(光學)這個詞,早期只用于跟眼睛和視見相聯(lián)系的事物。而今天,常說的光學是廣義的,是研究從微波、紅外線、可見光、紫外線直到 X射線的寬廣波段范圍內(nèi)的,關于電磁輻射的發(fā)生、傳播、接收和顯示,以及跟物質(zhì)相互作用的科學。光學是物理學的一個重要組成部分,也是與其他應用技術(shù)緊密相關的學科。


  歷史發(fā)展

  光學是一門有悠久歷史的學科,它的發(fā)展史可追溯到2000多年前。

  人類對光的研究,最初主要是試圖回答&ldquo;人怎么能看見周圍的物體?&rdquo;之類問題。約在公元前400多年(先秦的代),中國的《墨經(jīng)》中記錄了世界上最早的光學知識。它有八條關于光學的記載,敘述影的定義和生成,光的直線傳播性和針孔成像,并且以嚴謹?shù)奈淖钟懻摿嗽谄矫骁R、凹球面鏡和凸球面鏡中物和像的關系。


  自《墨經(jīng)》開始,公元11世紀阿拉伯人伊本.海賽木發(fā)明透鏡;公元1590年到17世紀初,詹森和李普希同時獨立地發(fā)明顯微鏡;一直到17世紀上半葉,才由斯涅耳和笛卡兒將光的反射和折射的觀察結(jié)果,歸結(jié)為今天大家所慣用的反射定律和折射定律。


  1665年,牛頓進行太陽光的實驗,它把太陽光分解成簡單的組成部分,這些成分形成一個顏色按一定順序排列的光分布---光譜。它使人們第一次接觸到光的客觀的和定量的特征,各單色光在空間上的分離是由光的本性決定的。


  牛頓還發(fā)現(xiàn)了把曲率半徑很大的凸透鏡放在光學平玻璃板上,當用白光照射時,則見透鏡與玻璃平板接觸處出現(xiàn)一組彩色的同心環(huán)狀條紋;當用某一單色光照射時,則出現(xiàn)一組明暗相間的同心環(huán)條紋,后人把這種現(xiàn)象稱牛頓環(huán)。借助這種現(xiàn)象可以用第一暗環(huán)的空氣隙的厚度來定量地表征相應的單色光。


  牛頓在發(fā)現(xiàn)這些重要現(xiàn)象的同時,根據(jù)光的直線傳播性,認為光是一種微粒流。微粒從光源飛出來,在均勻媒質(zhì)內(nèi)遵從力學定律作等速直線運動。牛頓用這種觀點對折射和反射現(xiàn)象作了解釋。


  惠更斯是光的微粒說的反對者,他創(chuàng)立了光的波動說。提出--光同聲一樣,是以球形波面?zhèn)鞑サ?-。并且指出光振動所達到的每一點,都可視為次波的振動中心、次波的包絡面為傳播波的波陣面(波前)。在整個18世紀中,光的微粒流理論和光的波動理論都被粗略地提了出來,但都不很完整。

  19世紀初,波動光學初步形成,其中托馬斯&middot;楊圓滿地解釋了&ldquo;薄膜顏色&rdquo;和雙狹縫乾涉現(xiàn)象。菲涅耳于1818年以楊氏乾涉原理補充了惠更斯原理,由此形成了今天為人們所熟知的惠更斯-菲涅耳原理,用它可圓滿地解釋光的干涉和衍射現(xiàn)象,也能解釋光的直線傳播。

  在進一步的研究中,觀察到了光的偏振和偏振光的干涉。為了解釋這些現(xiàn)象,菲涅耳假定光是一種在連續(xù)媒質(zhì)(以太)中傳播的橫波。為說明光在各不同媒質(zhì)中的不同速度,又必須假定以太的特性在不同的物質(zhì)中是不同的;在各向異性媒質(zhì)中還需要有更復雜的假設。此外,還必須給以太以更特殊的性質(zhì)才能解釋光不是縱波。如此性質(zhì)的以太是難以想象的。


  1846年,法拉第發(fā)現(xiàn)了光的振動面在磁場中發(fā)生旋轉(zhuǎn);1856年,韋伯發(fā)現(xiàn)光在真空中的速度等于電流強度的電磁單位與靜電單位的比值。他們的發(fā)現(xiàn)表明光學現(xiàn)象與磁學、電學現(xiàn)象間有一定的內(nèi)在關系。


  1860 年前后,麥克斯韋的指出,電場和磁場的改變,不能局限于空間的某一部分,而是以等于電流的電磁單位與靜電單位的比值的速度傳播著,光就是這樣一種電磁現(xiàn)象。這個結(jié)論在1888年為赫茲的實驗證實。然而,這樣的理論還不能說明能產(chǎn)生象光這樣高的頻率的電振子的性質(zhì),也不能解釋光的色散現(xiàn)象。到了1896年洛倫茲創(chuàng)立電子論,才解釋了發(fā)光和物質(zhì)吸收光的現(xiàn)象,也解釋了光在物質(zhì)中傳播的各種特點,包括對色散現(xiàn)象的解釋。在洛倫茲的理論中,以太乃是廣袤無限的不動的媒質(zhì),其唯一特點是,在這種媒質(zhì)中光振動具有一定的傳播速度。


  對于像熾熱的黑體的輻射中能量按波長分布這樣重要的問題,洛倫茲理論還不能給出令人滿意的解釋。并且,如果認為洛倫茲關于以太的概念是正確的話,則可將不動的以太選作參照系,使人們能區(qū)別出絕對運動。而事實上,1887年邁克耳遜用乾涉儀測-以太風-,得到否定的結(jié)果,這表明到了洛倫茲電子論時期,人們對光的本性的認識仍然有不少片面性。


  1900年,普朗克從物質(zhì)的分子結(jié)構(gòu)理論中借用不連續(xù)性的概念,提出了輻射的量子論。他認為各種頻率的電磁波,包括光,只能以各自確定分量的能量從振子射出,這種能量微粒稱為量子,光的量子稱為光子。


  量子論不僅很自然地解釋了灼熱體輻射能量按波長分布的規(guī)律,而且以全新的方式提出了光與物質(zhì)相互作用的整個問題。量子論不但給光學,也給整個物理學提供了新的概念,所以通常把它的誕生視為近代物理學的起點。


  1905年,愛因斯坦運用量子論解釋了光電效應。他給光子作了十分明確的表示,特別指出光與物質(zhì)相互作用時,光也是以光子為最小單位進行的。

  1905 年9月,德國《物理學年鑒》發(fā)表了愛因斯坦的"關于運動媒質(zhì)的電動力學"一文。第一次提出了狹義相對論基本原理,文中指出,從伽利略和牛頓時代以來占統(tǒng)治地位的古典物理學,其應用范圍只限于速度遠遠小于光速的情況,而他的新理論可解釋與很大運動速度有關的過程的特征,根本放棄了以太的概念,圓滿地解釋了運動物體的光學現(xiàn)象。


  這樣,在20世紀初,一方面從光的干涉、衍射、偏振以及運動物體的光學現(xiàn)象確證了光是電磁波;而另一方面又從熱輻射、光電效應、光壓以及光的化學作用等無可懷疑地證明了光的量子性--微粒性。


  1922 年發(fā)現(xiàn)的康普頓效應,1928年發(fā)現(xiàn)的喇曼效應,以及當時已能從實驗上獲得的原子光譜的超精細結(jié)構(gòu),它們都表明光學的發(fā)展是與量子物理緊密相關的。光學的發(fā)展歷史表明,現(xiàn)代物理學中的兩個最重要的基礎理論--量子力學和狹義相對論都是在關于光的研究中誕生和發(fā)展的。


  此后,光學開始進入了一個新的時期,以致于成為現(xiàn)代物理學和現(xiàn)代科學技術(shù)前沿的重要組成部分。其中最重要的成就,就是發(fā)現(xiàn)了愛因斯坦于1916年預言過的原子和分子的受激輻射,并且創(chuàng)造了許多具體的產(chǎn)生受激輻射的技術(shù)。


  愛因斯坦研究輻射時指出,在一定條件下,如果能使受激輻射繼續(xù)去激發(fā)其他粒子,造成連鎖反應,雪崩似地獲得放大效果,最后就可得到單色性極強的輻射,即激光。1960年,西奧多--梅曼用紅寶石制成第一臺可見光的激光器;同年制成氦氖激光器;1962年產(chǎn)生了半導體激光器;1963年產(chǎn)生了可調(diào)諧染料激光器。由于激光具有極好的單色性、高亮度和良好的方向性,所以自1958年發(fā)現(xiàn)以來,得到了迅速的發(fā)展和廣泛應用,引起了科學技術(shù)的重大變化。


  光學的另一個重要的分支是由成像光學、全息術(shù)和光學信息處理組成的。這一分支最早可追溯到1873年阿貝提出的顯微鏡成像理論,和1906年波特為之完成的實驗驗證;1935年澤爾尼克提出位相反襯觀察法,并依此由蔡司工廠制成相襯顯微鏡,為此他獲得了1953年諾貝爾物理學獎;1948年伽柏提出的現(xiàn)代全息照相術(shù)的前身--波陣面再現(xiàn)原理,為此,伽柏獲得了1971年諾貝爾物理學獎。


  自20世紀50年代以來,人們開始把數(shù)學、電子技術(shù)和通信理論與光學結(jié)合起來,給光學引入了頻譜、空間濾波、載波、線性變換及相關運算等概念,更新了經(jīng)典成像光學,形成了所謂&ldquo;博里葉光學&rdquo;。再加上由于激光所提供的相乾光和由利思及阿帕特內(nèi)克斯改進了的全息術(shù),形成了一個新的學科領域---光學信息處理。光纖通信就是依據(jù)這方面理論的重要成就,它為信息傳輸和處理提供了嶄新的技術(shù)。


  在現(xiàn)代光學本身,由強激光產(chǎn)生的非線性光學現(xiàn)象正為越來越多的人們所注意。激光光譜學,包括激光喇曼光譜學、高分辨率光譜和皮秒超短脈沖,以及可調(diào)諧激光技術(shù)的出現(xiàn),已使傳統(tǒng)的光譜學發(fā)生了很大的變化,成為深入研究物質(zhì)微觀結(jié)構(gòu)、運動規(guī)律及能量轉(zhuǎn)換機制的重要手段。它為凝聚態(tài)物理學、分子生物學和化學的動態(tài)過程的研究提供了前所未有的技術(shù)。


  光學的分類解析

  1高等物理光學分類:

  (1)幾何光學

  (2)物理光學

  (3)量子光學


  2初等物理分類:

  (1)初中階段:幾何光學

  (2)高中階段:幾何光學、物理光學

  (3)說明:一般生活中提高的光學就是高中階段的分類標準。


  光學的研究內(nèi)容

  我們通常把光學分成幾何光學、物理光學和量子光學。

  幾何光學是從幾個由實驗得來的基本原理出發(fā),來研究光的傳播問題的學科。它利用光線的概念、折射、反射定律來描述光在各種媒質(zhì)中傳播的途徑,它得出的結(jié)果通??偸遣▌庸鈱W在某些條件下的近似或極限。


  物理光學是從光的波動性出發(fā)來研究光在傳播過程中所發(fā)生的現(xiàn)象的學科,所以也稱為波動光學。它可以比較方便的研究光的干涉、光的衍射、光的偏振,以及光在各向異性的媒質(zhì)中傳插時所表現(xiàn)出的現(xiàn)象。


  波動光學的基礎就是經(jīng)典電動力學的麥克斯韋方程組。波動光學不詳論介電常數(shù)和磁導率與物質(zhì)結(jié)構(gòu)的關系,而側(cè)重于解釋光波的表現(xiàn)規(guī)律。波動光學可以解釋光在散射媒質(zhì)和各向異性媒質(zhì)中傳播時現(xiàn)象,以及光在媒質(zhì)界面附近的表現(xiàn);也能解釋色散現(xiàn)象和各種媒質(zhì)中壓力、溫度、聲場、電場和磁場對光的現(xiàn)象的影響。


  量子光學 英文名稱:quantum optics

  量子光學是以輻射的量子理論研究光的產(chǎn)生、傳輸、檢測及光與物質(zhì)相互作用的學科。1900年普朗克在研究黑體輻射時,為了從理論上推導出得到的與實際相符甚好的經(jīng)驗公式,他大膽地提出了與經(jīng)典概念迥然不同的假設,即“組成黑體的振子的能量不能連續(xù)變化,只能取一份份的分立值”。


  1905年,愛因斯坦在研究光電效應時推廣了普朗克的上述量子論,進而提出了光子的概念。他認為光能并不像電磁波理論所描述的那樣分布在波陣面上,而是集中在所謂光子的微粒上。在光電效應中,當光子照射到金屬表面時,一次為金屬中的電子全部吸收,而無需電磁理論所預計的那種累積能量的時間,電子把這能量的一部分用于克服金屬表面對它的吸力即作逸出功,余下的就變成電子離開金屬表面后的動能。


  這種從光子的性質(zhì)出發(fā),來研究光與物質(zhì)相互作用的學科即為量子光學。它的基礎主要是量子力學和量子電動力學。

  光的這種既表現(xiàn)出波動性又具有粒子性的現(xiàn)象既為光的波粒二象性。后來的研究從理論和實驗上無可爭辯地證明了:非但光有這種兩重性,世界的所有物質(zhì),包括電子、質(zhì)子、中子和原子以及所有的宏觀事物,也都有與其本身質(zhì)量和速度相聯(lián)系的波動的特性。


  應用光學 光學是由許多與物理學緊密聯(lián)系的分支學科組成;由于它有廣泛的應用,所以還有一系列應用背景較強的分支學科也屬于光學范圍。例如,有關電磁輻射的物理量的測量的光度學、輻射度學;以正常平均人眼為接收器,來研究電磁輻射所引起的彩色視覺,及其心理物理量的測量的色度學;以及眾多的技術(shù)光學:光學系統(tǒng)設計及光學儀器理論,光學制造和光學測試,干涉量度學、薄膜光學、纖維光學和集成光學等;還有與其他學科交叉的分支,如天文光學、海洋光學、遙感光學、大氣光學、生理光學及兵器光學等。

標簽: 光學