微型投影機(jī)的技術(shù)與發(fā)展趨勢(shì)分析
近年來(lái),隨著多媒體手機(jī)、行動(dòng)電視、數(shù)位相機(jī)與攝影機(jī)、電子游戲機(jī)、行動(dòng)式多媒體播放器等行動(dòng)式電子產(chǎn)品的普及,培養(yǎng)消費(fèi)者在行動(dòng)裝置上觀看多媒體資料的習(xí)慣與攝錄影,也刺激消費(fèi)者對(duì)于多媒體資料的需求。然而,為攜帶方便,目前終端產(chǎn)品的螢?zāi)怀叽鐚?duì)于消費(fèi)者而言還是太小,無(wú)法長(zhǎng)時(shí)間透過(guò)熒幕觀看多媒體資料,因此,催生微型投影機(jī)的商機(jī)及需求。
目前微型雷射投影已被市場(chǎng)研究機(jī)構(gòu)視為下一世代的殺手級(jí)應(yīng)用產(chǎn)品,且其整合的光機(jī)電技術(shù),被公認(rèn)為最有商業(yè)價(jià)值的新技術(shù)開(kāi)發(fā)領(lǐng)域,將對(duì)包括手機(jī)在內(nèi)的消費(fèi)性行動(dòng)電子產(chǎn)品生態(tài)產(chǎn)生重大變化,所以手機(jī)一旦內(nèi)建微型雷射投影機(jī),即可取代傳統(tǒng)笨重的投影機(jī),對(duì)于生活的便利、商業(yè)的需求將會(huì)有極大的幫助。
雷射光較LED具備更多優(yōu)勢(shì)
表1為微型投影機(jī)相關(guān)的技術(shù)的整理比較。技術(shù)原理其實(shí)都很類(lèi)似,皆是由光源出發(fā),經(jīng)過(guò)模組端諸如微型掃描反射鏡(MEM)、硅基液晶(LCoS)、液晶顯示器(LCD)或數(shù)位微鏡裝置(DMD)的處理(前者為新技術(shù)、后三者為現(xiàn)有技術(shù)),再經(jīng)過(guò)光學(xué)系統(tǒng)投影到熒幕上,呈現(xiàn)出色彩豐富的平面影像。以上的分類(lèi)歸納到最頂層源頭,大致可由光源部分分為二大類(lèi)--發(fā)光二極管LED與雷射Laser。
表1 微型投影機(jī)相關(guān)技術(shù)比較表
微型LED投影機(jī)成本高、良率低,就DMD來(lái)說(shuō),需要百萬(wàn)組微振鏡,一個(gè)鏡子只能顯示一個(gè)畫(huà)素,設(shè)計(jì)愈多才能顯示更多的畫(huà)素,造成制程難度與成本增加。且每一款LED投影機(jī)光機(jī)設(shè)計(jì)復(fù)雜,需要復(fù)雜的光學(xué)系統(tǒng)進(jìn)行聚焦,造成體積大、耐摔性差,而不易置入行動(dòng)電子產(chǎn)品中。微型雷射投影機(jī)只需要一片微型掃描鏡,即可掃描出很多畫(huà)素,而且設(shè)計(jì)的掃描鏡,若具更高頻與更大角度,就可具備高階顯像的成本優(yōu)勢(shì)。再者,其掃描方式的最大好處是沒(méi)有鏡頭與對(duì)焦問(wèn)題,投影機(jī)任意擺設(shè)皆可,雷射光投影出去,在任何的平面上就形成影像,不須如LED投影機(jī)還要旋轉(zhuǎn)鏡頭調(diào)整焦距,所以光機(jī)架構(gòu)非常簡(jiǎn)單,目前微型化于行動(dòng)電子產(chǎn)品的可能性最高,而且,掃描鏡是經(jīng)由微機(jī)電制程批次量制造,可大幅降低成本。
另外,在色彩表現(xiàn)與效能消耗方面,雷射光因具有高指向性同調(diào)光,在空氣中傳播時(shí)不易被干涉,所以能將光傳遞至遠(yuǎn)處,其發(fā)光頻譜亦較LED窄。雷射的發(fā)光頻譜半高寬(FWHM)不到1納米(nm),而LED半高寬卻高達(dá)50納米,所以在色彩的表現(xiàn)上,雷射光色純度較佳,比LED銳利飽滿(mǎn)。又雷射的電光轉(zhuǎn)換效率高,與同樣的發(fā)光波長(zhǎng)比較,雷射會(huì)將輸入的電幾乎全部轉(zhuǎn)換成光;LED會(huì)將輸入的電轉(zhuǎn)換成發(fā)光頻譜較寬的光,而且還須要靠光學(xué)系統(tǒng)收集漫散的光源,LED的光電轉(zhuǎn)換效率明顯較差。因此,與LED總體比較起來(lái),雷射作為投影機(jī)的光源會(huì)比LED有較佳的效率與省電性,且產(chǎn)生的熱也比較少,隨著紅綠藍(lán)(RGB)光三原色到齊,全球?qū)⑾破鹄咨滹@示的熱潮,在未來(lái)光電產(chǎn)業(yè)中,半導(dǎo)體雷射將具有舉足輕重的地位。
雷射光源于微型投影架構(gòu)中扮演重要角色
微型雷射光機(jī)引擎各個(gè)元件設(shè)計(jì)與擺置如圖1所示,主要由RGB雷射源、分光鏡(Dichroic)、掃描鏡(Scanning Mirror)、基座(Base)四部分組合而成。微型雷射光機(jī)引擎運(yùn)作時(shí),由于分光鏡所鍍之鍍膜層對(duì)紅光不起反射作用,因此紅光會(huì)直接穿透兩片分光鏡;綠光會(huì)于到達(dá)前一片分光鏡時(shí)呈90度角反射,而于另一片時(shí)呈現(xiàn)穿透狀況;藍(lán)光會(huì)在到達(dá)分光鏡時(shí),呈90度角反射,最后,三原色光源呈現(xiàn)溷光狀態(tài),到達(dá)掃描鏡片時(shí),再呈90度角反射而投影到顯示屏幕。當(dāng)掃描鏡片開(kāi)始作動(dòng)時(shí),會(huì)有±10o~±15o的掃描角度(依各家廠商之規(guī)格而有所不同),此時(shí),在屏幕上就會(huì)由混光的投射點(diǎn)掃描變成二維的混光投射面,達(dá)到全彩投影的效果。以下分別介紹微型雷射光機(jī)引擎各組成元件。
圖1 微型雷射投影的光機(jī)引擎架構(gòu)圖
雷射源
半導(dǎo)體雷射具有體積小、電光轉(zhuǎn)換效率高、低消耗功率、壽命長(zhǎng)及易控制其光輸出功率,且調(diào)制頻率可達(dá)10GHz以上等特性,使半導(dǎo)體雷射應(yīng)用在微型投影機(jī)中將不可或缺。其中,各種雷射光中,紅光波長(zhǎng)為638奈米、綠光波長(zhǎng)為532奈米、藍(lán)光波長(zhǎng)則為445奈米。
分光鏡
提供雷射源穿透或反射,使三色源能溷光。其中使用的兩片分光鏡,一片的規(guī)格為反射波長(zhǎng)485~545奈米、穿透波長(zhǎng)570~825奈米,目的是使綠光反射,紅光穿透;另一片的規(guī)格為反射波長(zhǎng)327~488奈米、穿透波長(zhǎng)515~850奈米,目的是使藍(lán)光反射,而紅光、綠光穿透,最后能達(dá)到三色原溷光效果。綠光反射鏡與藍(lán)光反射鏡的穿透率與波長(zhǎng)關(guān)係如下圖2、3所示,圖中的分光鏡為Semrock標(biāo)準(zhǔn)規(guī)格產(chǎn)品。
圖2 綠光反射鏡穿透率與波長(zhǎng)關(guān)系
圖3 藍(lán)光反射鏡穿透率與波長(zhǎng)關(guān)系
掃描鏡片
掃描鏡片因具有大掃描角、高操作頻率、結(jié)構(gòu)簡(jiǎn)單優(yōu)勢(shì),在光機(jī)引擎中扮演重要角色,即為將投影點(diǎn)掃描成二維投影面。主要由一個(gè)提供水平方向高頻掃描的鏡面,其扭轉(zhuǎn)軸固定于一個(gè)提供垂直方向低頻掃描的框架,將雷射光源投射于鏡面上,此兩個(gè)不同軸向且正交的扭轉(zhuǎn)軸,即可掃描出一個(gè)二維的畫(huà)面,借由扭轉(zhuǎn)軸、鏡面與框架的設(shè)計(jì)即可達(dá)成高頻掃描需求。
基座
基座主要的功能除承載雷射源、掃描鏡、分光鏡三項(xiàng)元件外,最重要的作用是散熱。在如此微小的光機(jī)體積中,熱若無(wú)法有效散除,則必對(duì)雷射源的效率產(chǎn)生重大影響,亦即溫控對(duì)雷射源非常重要。在運(yùn)作時(shí),須為一接近常溫的定值,且考量光機(jī)引擎是裝置于密閉空間中,由于無(wú)法產(chǎn)生對(duì)流,因此鰭片將失去散熱效果,所以去除鰭片的設(shè)計(jì),改由與之接觸的大底殼面積散熱,而且,以人手的觸感能接受的溫度為原則,上限為40℃。
晶圓級(jí)微型雷射投影機(jī)為未來(lái)趨勢(shì)
因應(yīng)市場(chǎng)小型化、薄型化與低成本的需求,而衍生出來(lái)的核心技術(shù)為半導(dǎo)體綠光雷射與晶圓級(jí)光學(xué)封裝兩大類(lèi)。微型光機(jī)引擎為雷射投影模組的核心組件,其規(guī)格重要性直接影響微投影模組的體積、品質(zhì)(投影亮度與尺寸)與組裝成本等,組裝不良時(shí)將產(chǎn)生雜散光而影響投射畫(huà)面,但太過(guò)精密的組裝則又將導(dǎo)致成本的增加,而為因應(yīng)未來(lái)內(nèi)建于行動(dòng)電子裝置的需求,微型化光機(jī)體積是最首要的規(guī)格要求。
由RGB微型雷射光源、微型掃描鏡等各零件組合成微型光機(jī)引擎,再整合微機(jī)電系統(tǒng)(MEMS)微型光學(xué)平臺(tái)(Optical Bench)、微型準(zhǔn)直鏡片、微型塊狀分光鏡的可攜式微型雷射投影模組,將是未來(lái)行動(dòng)電子裝置的重要賣(mài)點(diǎn)。 (本文作者任職于臺(tái)灣工研院南分院微系統(tǒng)科技中心)